*/
站内搜索:
新闻中心
参政议政
组织建设
社会服务
学习研究
九三风采
市级组织
 
九三学社浙江省委员会...
2019年全国“两会”专...
2019年省“两会”专题
纪念改革开放40周年、...
九三学社浙江省第二次...
 
用户名:
校验码:
密    码:
 
 
 
 科技前沿 

深度学习算法准确追踪动物运动

       发布时间:2018-08-22 点击数:429

2018年8月22日    来源:科技日报

  根据英国《自然·神经科学》杂志21日在线发表的一项研究,美国哈佛大学团队运用一种新型深度学习算法,成功追踪动物运动及行为,其准确度可达到人工水平,而且无需采用追踪标记物或进行费时的手动分析。专家认为,这一成果打开了海量的数据来源之门。
  准确追踪行为发生期间的身体运动部位是运动科学的一项重要内容。但是,如果采用视频记录方式来追踪运动,研究人员要么需要费时费力地标记每一帧,要么需要在研究对象身体的预定点上放置标记物。而标记物可能干扰研究目标的行为,而且一般只适合有限类型的运动。
  此次,哈佛大学科学家团队利用机器学习开发了一款开源运动追踪工具,名为“DeepLabCut”,它不受以上限制。研究团队先采用一个大型目标识别图像数据库对“DeepLabCut”进行了预训练。之后,“DeepLabCut”只需要接受小规模的人类标记图像(约200张)训练,即可完成一项新的追踪任务,从而方便神经科学家研究动物行为。
  研究人员演示了这种算法,其可以在无需标记物的情况下,追踪小鼠和苍蝇在各种行为期间的任意身体部位运动,而且准确度可达到人工水平。“DeepLabCut”可以追踪精细的动作,如果蝇产卵、伸吻,以及小鼠伸爪时每一个指的轨迹。
  在相应的新闻与观点文章中,中国北京大学魏坤琳与美国宾夕法尼亚大学康拉德·考丁表示,“DeepLabCut”在理论上适用于任何视频,从而为运动科学打开了巨大的数据来源之门。他们预计,未来“运动捕捉将从实验室内的一项艰难而又耗资不菲的任务,变成一项每个人在日常生活中就能完成的小事情”。(记者 张梦然)


 
相关新闻:
纳米技术使特种铝合金变得可焊接       自供电可穿戴心脏传感器“首秀      
金属镓成为抗菌利器       德国极地试种蔬菜获得成功      
“双重性格”保护膜 让锂电池不被刺穿       编程人工水凝胶实现复杂三维运动      
“基因魔剪”有了脱靶突变检测系统       以色列研发出全自主类蝙蝠机器人      
欢迎您:您是第 10632216 位访客
z">